Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.593
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0300629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557690

RESUMO

Taking the green financial ecosystem composed of innovators, green financial institutions and regulators as the object of research, it explores the issue of how to improve the level of efforts of the three types of subjects and the benefits of risk management in the green financial ecosystem. The optimal level of effort, optimal level of return, and optimal level of return on risk management of green financial ecosystems for innovators, green financial institutions, and regulators under the three modes of No-incentive Contract, Cost-sharing Contract, and Synergistic Cooperation Contract are investigated and analyzed respectively, and verified by numerical simulation analysis. The results show: (1) Compared to the No-incentive Contract, the Cost-sharing Contract and the Synergy Cooperation Contract generate more significant incentives, and returns increase over time in both models. (2) The effort level of the participating subjects under the Synergistic Cooperation Contract is the highest, which can realize the Pareto optimization of the participating subjects and the green financial ecosystem at the same time. The study's findings contribute to a deeper understanding of cooperation among innovators, green financial institutions and regulators in facilitating risk management in green financial ecosystems and provide a realistic reference for risk managers in green financial ecosystems.


Assuntos
Ecossistema , Motivação , Humanos , Gestão de Riscos , Simulação por Computador
2.
J Environ Manage ; 357: 120780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569267

RESUMO

Water availability in the subhumid region is highly vulnerable to frequent droughts. Water scarcity in this region has become a limiting factor for ecosystem health, human livelihood, and regional economic development. A notable pattern of land cover change in the subhumid region of the United States is the increasing forest area due to afforestation/reforestation and woody plant encroachment (WPE). Given the distinct hydrological processes and runoff generation between forests and grasslands, it is important to evaluate the impacts of forest expansion on water resources, especially under future climate conditions. In this study, we focused on a typical subhumid watershed in the United States - the Little River Watershed (LRW). Utilizing SWAT + simulations, we projected streamflow dynamics at the end of the 21st century in two climate scenarios (RCP45 and RCP85) and eleven forest expansion scenarios. In comparison to the period of 2000-2019, future climate change during 2080-2099 will increase streamflow in the Little River by 5.1% in the RCP45 but reduce streamflow significantly by 30.1% in the RCP85. Additionally, our simulations revealed a linear decline in streamflow with increasing forest coverage. If all grasslands in LRW were converted into forests, it would lead to an additional 41% reduction in streamflow. Of significant concern is Lake Thunderbird, the primary reservoir supplying drinking water to the Oklahoma City metropolitan area. Our simulation showed that if all grasslands were replaced by forests, Lake Thunderbird during 2080-2099 would experience an average of 8.6 years in the RCP45 and 9.4 years in the RCP85 with water inflow amount lower than that during the extreme drought event in 2011/2012. These findings hold crucial implications for the formulation of policies related to afforestation/reforestation and WPE management in subhumid regions, which is essential to ensuring the sustainability of water resources.


Assuntos
Ecossistema , Florestas , Humanos , Recursos Hídricos , Água , Abastecimento de Água , Plantas , Mudança Climática , Rios
3.
Sci Rep ; 14(1): 7893, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570549

RESUMO

The Anthropocene rise in global temperatures is facilitating the expansion of tropical species into historically non-native subtropical locales, including coral reef fish. This redistribution of species, known as tropicalization, has serious consequences for economic development, livelihoods, food security, human health, and culture. Measuring the tropicalization of subtropical reef fish assemblages is difficult due to expansive species ranges, temporal distribution shifts with the movement of isotherms, and many dynamic density-dependent factors affecting occurrence and density. Therefore, in locales where tropical and subtropical species co-occur, detecting tropicalization changes relies on regional analyses of the relative densities and occurrence of species. This study provides a baseline for monitoring reef fish tropicalization by utilizing extensive monitoring data from a pivotal location in southeast Florida along a known transition between tropical and subtropical ecotones to define regional reef fish assemblages and use benthic habitat maps to spatially represent their zoogeography. Assemblages varied significantly by ecoregion, habitat depth, habitat type, and topographic relief. Generally, the southern assemblages had higher occurrences and densities of tropical species, whereas the northern assemblages had a higher occurrence and density of subtropical species. A total of 108 species were exclusive to regions south of the Bahamas Fracture Zone (BFZ) (South Palm Beach, Deerfield, Broward-Miami) and 35 were exclusive to the north (North Palm Beach, Martin), supporting the BFZ as a pivotal location that affects the coastal biogeographic extent of tropical marine species in eastern North America. Future tropicalization of reef fish assemblages are expected to be evident in temporal deviance of percent occurrence and/or relative species densities between baseline assemblages, where the poleward expansion of tropical species is expected to show the homogenization of assemblage regions as adjacent regions become more similar or the regional boundaries expand poleward. Ecoregions, habitat depth, habitat type, and relief should be incorporated into the stratification and analyses of reef fish surveys to statistically determine assemblage differences across the seascape, including those from tropicalization.


Assuntos
Recifes de Corais , Fraturas Ósseas , Animais , Humanos , Ecossistema , Peixes , Florida , Bahamas
4.
Bull Environ Contam Toxicol ; 112(4): 53, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565770

RESUMO

The objectives of this study were to: (1) characterize the exposure of aquatic ecosystems in Southern Ontario, Canada to pesticides between 2002 and 2016 by constructing environmental exposure distributions (EEDs), including censored data; and (2) predict the probability of exceeding acute regulatory guidelines. Surface water samples were collected over a 15-year period by Environment and Climate Change Canada. The dataset contained 167 compounds, sampled across 114 sites, with a total of 2,213 samples. There were 67,920 total observations of which 55,058 were non-detects (81%), and 12,862 detects (19%). The most commonly detected compound was atrazine, with a maximum concentration of 18,600 ngL- 1 and ~ 4% chance of exceeding an acute guideline (1,000 ngL- 1) in rivers and streams. Using Southern Ontario as a case study, this study provides insight into the risk that pesticides pose to aquatic ecosystems and the utility of EEDs that include censored data for the purpose of risk assessment.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Ontário , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Rios , Probabilidade , Medição de Risco
5.
PeerJ ; 12: e16509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426131

RESUMO

Step-selection models are widely used to study animals' fine-scale habitat selection based on movement data. Resource preferences and movement patterns, however, often depend on the animal's unobserved behavioral states, such as resting or foraging. As this is ignored in standard (integrated) step-selection analyses (SSA, iSSA), different approaches have emerged to account for such states in the analysis. The performance of these approaches and the consequences of ignoring the states in step-selection analysis, however, have rarely been quantified. We evaluate the recent idea of combining iSSAs with hidden Markov models (HMMs), which allows for a joint estimation of the unobserved behavioral states and the associated state-dependent habitat selection. Besides theoretical considerations, we use an extensive simulation study and a case study on fine-scale interactions of simultaneously tracked bank voles (Myodes glareolus) to compare this HMM-iSSA empirically to both the standard and a widely used classification-based iSSA (i.e., a two-step approach based on a separate prior state classification). Moreover, to facilitate its use, we implemented the basic HMM-iSSA approach in the R package HMMiSSA available on GitHub.


Assuntos
Ecossistema , Movimento , Animais , Cadeias de Markov , Simulação por Computador
6.
PeerJ ; 12: e16963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426140

RESUMO

Global biodiversity is declining at an ever-increasing rate. Yet effective policies to mitigate or reverse these declines require ecosystem condition data that are rarely available. Morphology-based bioassessment methods are difficult to scale, limited in scope, suffer prohibitive costs, require skilled taxonomists, and can be applied inconsistently between practitioners. Environmental DNA (eDNA) metabarcoding offers a powerful, reproducible and scalable solution that can survey across the tree-of-life with relatively low cost and minimal expertise for sample collection. However, there remains a need to condense the complex, multidimensional community information into simple, interpretable metrics of ecological health for environmental management purposes. We developed a riverine taxon-independent community index (TICI) that objectively assigns indicator values to amplicon sequence variants (ASVs), and significantly improves the statistical power and utility of eDNA-based bioassessments. The TICI model training step uses the Chessman iterative learning algorithm to assign health indicator scores to a large number of ASVs that are commonly encountered across a wide geographic range. New sites can then be evaluated for ecological health by averaging the indicator value of the ASVs present at the site. We trained a TICI model on an eDNA dataset from 53 well-studied riverine monitoring sites across New Zealand, each sampled with a high level of biological replication (n = 16). Eight short-amplicon metabarcoding assays were used to generate data from a broad taxonomic range, including bacteria, microeukaryotes, fungi, plants, and animals. Site-specific TICI scores were strongly correlated with historical stream condition scores from macroinvertebrate assessments (macroinvertebrate community index or MCI; R2 = 0.82), and TICI variation between sample replicates was minimal (CV = 0.013). Taken together, this demonstrates the potential for taxon-independent eDNA analysis to provide a reliable, robust and low-cost assessment of ecological health that is accessible to environmental managers, decision makers, and the wider community.


Assuntos
DNA Ambiental , Ecossistema , Animais , DNA Ambiental/genética , Código de Barras de DNA Taxonômico/métodos , Biodiversidade , Rios
7.
Environ Geochem Health ; 46(3): 105, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441743

RESUMO

The extensive use of organic amine pesticides (OAPs) in agricultural practices has resulted in the contamination of water environments, posing threats to ecosystems and human health. This study focused on the Xiang River (XR), a representative drinking water source, as the research area to investigate the occurrence characteristics of 34 OAPs. Diphenylamine emerged as the most prevalent OAP in surface water due to industrial and agricultural activities, while cycloate dominated in sediments due to cumulative effects. Generally, the concentration of OAPs in a mixed tap water sample was lower than those in surface water samples, indicating OAPs can be removed by water plants to a certain extent. The water-sediment distribution coefficients (kd) of ΣOAPs were much less than 1 L/g, the majority of OAPs maintained relatively high concentrations in water samples instead of accumulating in sediments. Furthermore, risk assessment revealed that carbofuran showed a moderate risk to the aquatic environment, with a risk quotient of 0.23, while other OAPs presented minor risks. This study provided crucial insights for regional pesticide management and control in the XR basin, emphasizing the importance of implementing strategies to minimize the release of OAPs into the environment and protect human health.


Assuntos
Água Potável , Praguicidas , Humanos , Aminas , Ecossistema , Rios , China , Medição de Risco
8.
Sci Rep ; 14(1): 6318, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491325

RESUMO

Environmental niche modeling (ENM) has emerged as a promising tool for identifying grass species with potential for rangeland restoration. This approach can detect suitable areas and environments where these species can be planted. In this study, we employed ENM to estimate the potential distribution range of 50 grass species of the grasslands and shrublands of northern Mexico. The outcome of the ENM served to identify grass species with potential for restoration in Mexico, especially those not commonly used for that purpose in the past. Results suggested the possibility of selecting seven grass species with the potential for revegetating degraded grasslands, nine for shrublands, and six for alkaline soils. This research provides insights into the environmental adaptations of different grass species distributed in the rangelands of northern Mexico. Ecologists, conservation planners, researchers, and range managers could use these outcomes and the maps of the potential distribution ranges as supportive information to conduct effective restoration efforts. In turn, this can assist in increasing the probability of success of future rangelands restoration programs, which are often costly in terms of financial investments and labor.


Assuntos
Ecossistema , Poaceae , México , Conservação dos Recursos Naturais/métodos , Solo
9.
Pestic Biochem Physiol ; 199: 105767, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458676

RESUMO

The Bonin Archipelago is a United Nations Educational, Scientific and Cultural Organization's World Natural Heritage Site in Japan with a unique ecosystem; however, the invasive rodents preying on endemic species have been a significant concern. The anticoagulant rodenticide, diphacinone, sprayed by the Ministry of the Environment, has succeeded; however, its repeated use leads to rodenticide resistance. This study evaluated the sensitivity by in vivo pharmacokinetics/pharmacodynamics (PK/PD) analysis and physiologically-based pharmacokinetic modeling to diphacinone in black rats (Rattus rattus) captured on the Bonin Archipelago in February 2022. The Bonin rats exhibited prolonged coagulation time after diphacinone administration. They recovered earlier than susceptible black rats, indicating that Bonin rats were less susceptible, though there were no genetic mutations in Vkorc1, the target enzyme of diphacinone. After the administration of diphacinone, hepatic expression levels of Fsp1, identified as the vitamin K reductase, was decreased, however, the Bonin rats exhibited the most minor suppression. The PK analysis showed that the excretion capacity of the Bonin rats was lower than that of the resistant black rats. In the PBPK modeling, the resistant black rats showed higher clearance than the Bonin and susceptible black rats due to high hepatic metabolic capacity. The Bonin rats demonstrated slow absorption and relatively low clearance. This study highlighted the reduced rodenticide-sensitive tendency of wild black rats in the Bonin Archipelago at an in vivo phenotype level. At the same time, they do not have known rodenticide resistance mechanisms, such as hepatic metabolic enhancement or Vkorc1 mutations. It is crucial to monitor the biological levels to evaluate rodenticide sensitivity accurately.


Assuntos
Fenindiona/análogos & derivados , Rodenticidas , Ratos , Animais , Rodenticidas/farmacologia , Japão , Ecossistema
10.
Sci Total Environ ; 926: 171923, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522523

RESUMO

The detrimental effects of heavy metal accumulation on both ecosystems and public health have raised widespread concern. Source-specific risk assessment is crucial for developing effective strategies to prevent and control heavy metal contamination in surface water. This study aims to investigate the contamination characteristics of heavy metals in the Yangtze River Basin, identifying the pollution sources, assessing the risk levels, and further evaluating the health risks to humans. The results indicated that the average concentrations of heavy metals were ranked as follows: zinc (Zn) > arsenic (As) > copper (Cu) > chromium (Cr) > cadmium (Cd) > nickel (Ni) > lead (Pb), with average concentrations of 38.02 µg/L, 4.34 µg/L, 2.53 µg/L, 2.10 µg/L, 1.17 µg/L, 0.84 µg/L, and 0.32 µg/L, respectively, all below the WHO 2017 standards for safe drinking water. The distribution trend indicates higher concentrations in the upper and lower reaches and lower concentrations in the mid-reaches of the river. By integrating the Absolute Principal Component Scores-Multiple Linear Regression (APCS-MLR) receptor model and Positive Matrix Factorization (PMF) model, the main sources of heavy metals were identified as industrial activities (APCS-MLR: 41.3 %; PMF: 42.1 %), agricultural activities (APCS-MLR: 30.1 %; PMF: 27.4 %), and unknown mix sources (APCS-MLR: 29.1 %; PMF: 30.4 %). The calculation of the hazard index (HI) for both children and adults was <1, indicating no non-carcinogenic or carcinogenic risks. Based on the source-specific risk assessment, agricultural activities contribute the most to non-carcinogenic risks, while industrial activities pose the greatest contribution to carcinogenic risks. This study offers a reference for monitoring heavy metals and controlling health risks to residents, and provides crucial evidence for the utilization and protection of surface water in the Yangtze River Basin.


Assuntos
Água Potável , Metais Pesados , Adulto , Criança , Humanos , Rios , Ecossistema , Monitoramento Ambiental , Metais Pesados/análise , Cádmio , Medição de Risco , China
11.
Sci Total Environ ; 926: 171941, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527544

RESUMO

Anthropogenic activities over the past half-century have had a negative impact on the wetland ecosystem in the Nile Delta, which provides essential provisioning and regulating services. Therefore, it is crucial to systematically investigate pollution levels and their ecological consequences at both spatial and temporal scales in order to promote sustainable development. In this study, data on metal pollution in the Manzala Lake were compiled through a systematic review of all published literature from 1968 to 2020. Additionally, agricultural data (including land use, pesticide and fertilizer usage, and discharge) and economic data for the same time period were collected to identify the main drivers of pollution. The results indicated an overall increasing trend in heavy metal concentrations during the study period. The average concentrations of metals, arranged in descending order, were as follows: Fe (15,115.5 µg/g) > Mn (722 µg/g) > Zn (115.4 µg/g) > Cu (65.9 µg/g) > Ni (62.5 µg/g) > Cr (58.1 µg/g) > Pb (54.1 µg/g) > Cd (4.7 µg/g) > Hg (0.1 µg/g). A linear regression model revealed that wastewater discharge, water reuse, and the use of pesticides and fertilizers are the main sources of heavy metal pollution in the Manzala Lake. Consequently, there has been a dramatic decrease in the biodiversity of fish and molluscan communities. The study also found a correlation between heavy metal pollution and socio-economic development, highlighting the urgent need for attention to the conservation, management, and sustainable development of the lake.


Assuntos
Metais Pesados , Praguicidas , Poluentes Químicos da Água , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Medição de Risco , Metais Pesados/análise , Lagos , China
12.
Water Res ; 254: 121385, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452525

RESUMO

The Yangtze River is the third longest river in the world with more than 6300 km, covering 0.4 billion people. However, the aquatic ecosystem of the Yangtze River has been seriously damaged in the past decades due to a rapid development of economic and industrialization along the coast. In this study, we first established a dataset of fifty elements, including nine common heavy metals (HMs) and forty-one other elements, in the Yangtze River Basin through the collection of historical data from 2000 to 2020, and then analyzed their spatiotemporal distribution characteristics. The results indicated that the Three Gorges Reservoir (TGR), a region formed by the construction of the Three Gorges Dam (TGD), may act as a sink for these elements from upstream regions. The concentrations of seven elements in surface water and 13 elements in sediment obviously increased from the upstream region of the TGR to the TGR. In addition, ten elements in the surface water and 5 elements in the sediments clearly decreased, possibly because of the interception effects of the TGD. On a timescale, Cr obviously tended to migrate from the water phase to the sediment; Pb tended to migrate from the sediment to the water phase. In the ecological risk assessment, all common HMs in surface water were supposed to have negligible risks as protecting 90 % of aquatic organisms; Cd (210.2), Hg (58.0) and As (43.1) in sediment posed high and moderate ecological risks using the methodology of the potential ecological risk index. Furthermore, Hunan Province is at considerable risk according to the sum of the potential risk index (314.8) due to Cd pollution (66.8 %). These fundamental data and results will support follow-up control strategies for elements and policies related to aquatic ecosystem protection in the Yangtze River Basin.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Ecossistema , Rios , Cádmio/análise , Estudos Retrospectivos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Água/análise , China
13.
Chemosphere ; 355: 141701, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508463

RESUMO

The purpose of this study is investigation of electrocoagulation (EC) as a treatment of municipal wastewater, integrating life cycle impact assessment (LCIA) for assessing its environmental performance of investigated treatment. The study evaluated the effectiveness of EC in removing physico-chemical and microbial parameters using aluminum (Al) and iron (Fe) electrodes in monopolar and bipolar modes. Bipolar arrangement of Al(-)/Al/Al/Al(+) electrodes achieved the highest removals: 70% COD, 72% BOD5 followed by complete elimination of total phosphorous, turbidity and microbial parameters. This treatment was subject to investigation of the influence of reaction time (t = 10-60 min) on removals at higher current density (CD = 3.33 mA/cm2). In order to reduce energy consumption, the same reaction time range was used with a reduced CD = 2.33 mA/cm2. Following removal efficiencies obtained: 47-72% COD (higher CD) and 53-78% (lower CD); 69-75% BOD5 (higher CD) and 55-74% CD (lower CD); 12-21% NH4- (higher CD) and 7-22% NH4- (lower CD). Total P, NO3- and NO2- compounds showed the same removals regardless the CD. Decrease in current density did not influence removals of total suspended matter, turbidity, salinity as well as microbial parameters. The bipolar arrangement of Al(-)/Al/Al/Al(+) electrodes, assuming a lower CD = 2.33 mA/cm2 and t = 30 min, was assessed with the Recipe 2016Midpoint (H) and USEtox v.2 LCIA methods to explore the environmental justification of using EC for wastewater treatment. The LCIA results revealed that the EC process significantly reduces water eutrophication and toxicity for freshwater and marine ecosystems, but has higher impacts in global warming, fossil fuel consumption, human toxicity, acidification, and terrestrial ecotoxicity due to high energy consumption. This can be mainly explained by the assumption in the study that the EC precipitate is dispersed to agricultural soil without any pre-treatment and material recovery, along with relatively high energy consumption during the process.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Humanos , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Eletrocoagulação/métodos , Ferro , Eletrodos , Alumínio , Resíduos Industriais/análise
14.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512633

RESUMO

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/toxicidade , Ecossistema , Raios Ultravioleta , Mudança Climática , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 926: 171400, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38461974

RESUMO

The maximum Rubisco carboxylation rate normalized to 25 °C (Vcmax25) is a key parameter in terrestrial biosphere models for simulating carbon cycling. Recently, global distributions of Vcmax25 have been derived through various methods and different data, including field measurements, ecological optimality theory (EOT), leaf chlorophyll content (LCC), and solar-induced chlorophyll fluorescence (SIF). However, direct validation poses challenges due to high uncertainty arising from limited ground-based observations. This study conducted an indirect evaluation of four Vcmax25 datasets by assessing the accuracy of gross primary productivity (GPP) simulated using the Biosphere-atmosphere Exchange Process Simulator (BEPS) at both site and global scales. Results indicate that, compared to utilizing Vcmax25 fixed by plant functional types (PFT) derived from field measurements, incorporating Vcmax25 derived from SIF and LCC (SIF + LCC), or solely LCC, into BEPS significantly reduces simulated errors in the annual total GPP, with a 23.2 %-25.1 % decrease in the average absolute bias across 196 FLUXNET2015 sites. Daily GPP for evergreen needleleaf forests, deciduous broadleaf forests, shrublands, grasslands, and croplands shows a 7.8 %-27.6 % decrease in absolute bias, primarily attributed to reduced simulation errors during off-peak seasons of vegetation growth. Conversely, the annual total GPP error simulated using EOT-derived Vcmax25 increases slightly (2.2 %) compared to that simulated using PFT-fixed Vcmax25. This is primarily due to a significant overestimation in evergreen broadleaf forests and underestimation in croplands, despite slight increased accuracy for other PFTs. The global annual GPP simulated using Vcmax25 with seasonal variations (i.e., LCC Vcmax25 and SIF + LCC Vcmax25) yields a 4.3 %-7.3 % decrease compared to that simulated using PFT-fixed Vcmax25. Compared to FLUXCOM and GOSIF GPP products, the GPP simulated based on SIF + LCC Vcmax25 and LCC Vcmax25 demonstrates better consistency (R2 = 0.91-0.93, RMSE = 314.2-376.6 g C m-2 yr-1). This study underscores the importance of accurately characterizing the spatiotemporal variations in Vcmax25 for the accurate simulation of global vegetation productivity.


Assuntos
Clorofila , Fotossíntese , Fluorescência , Florestas , Estações do Ano , Plantas , Folhas de Planta , Ecossistema
16.
Sci Rep ; 14(1): 7438, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548905

RESUMO

For rewilding the depleted crocodylian populations in India, a targeted 'one-species one area' based conservation approach was adopted in the early-1970s. Suitable habitats were identified and designated as protected areas, specifically targeted to recover a particular crocodylian species. A ~ 610 km stretch of Chambal River in the Ganga River Basin was declared as National Chambal Sanctuary to restore the 'Critically Endangered' gharial (Gavialis gangeticus), where active management of mugger (Crocodylus palustris) was discouraged. In the present study, we examined the population trends, occupancy, and genetic status of mugger by conducting population monitoring and genetic assessment to understand the status of potentially competitive mugger in the Sanctuary. Our finding suggests that the mugger population has notably increased and colonised the Sanctuary. We observed a moderate level of genetic diversity in the mugger, which was relatively higher compared to the gharial in the Sanctuary. The rapid colonization of ecological generalist mugger raises concerns about potential competition with ecological specialist gharial threatening its long-term sustainability. Considering the coexistence dynamics between the species, it is essential to extend adaptive management strategies for mugger to ensure successful recovery of gharial population in the Sanctuary.


Assuntos
Ecossistema , Rios , Índia
17.
Plant Physiol Biochem ; 208: 108510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471244

RESUMO

Microalgae are photosynthetic microorganisms playing a pivotal role in primary production in aquatic ecosystems, sustaining the entry of carbon in the biosphere. Microalgae have also been recognized as sustainable source of biomass to complement crops. For this objective they are cultivated in photobioreactors or ponds at high cell density to maximize biomass productivity and lower the cost of downstream processes. Photosynthesis depends on light availability, that is often not constant over time. In nature, sunlight fluctuates over diurnal cycles and weather conditions. In high-density microalgae cultures of photobioreactors outdoors, on top of natural variations, microalgae are subjected to further complexity in light exposure. Because of the high-density cells experience self-shading effects that heavily limit light availability in most of the mass culture volume. This limitation strongly affects biomass productivity of industrial microalgae cultivation plants with important implications on economic feasibility. Understanding how photosynthesis responds to cell density is informative to assess functionality in the inhomogeneous light environment of industrial photobioreactors. In this work we exploited a high-sensitivity Clark electrode to measure microalgae photosynthesis and compare cultures with different densities, using Nannochloropsis as model organism. We observed that cell density has a substantial impact on photosynthetic activity, and demonstrated the reduction of the cell's light-absorption capacity by genetic modification is a valuable strategy to increase photosynthetic functionality on a chlorophyll-basis of dense microalgae cultures.


Assuntos
Microalgas , Ecossistema , Oxigênio/metabolismo , Fotossíntese , Fotobiorreatores , Biomassa
18.
PLoS One ; 19(3): e0299089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547165

RESUMO

Water quality monitoring is a critical process in maintaining the well-being of aquatic ecosystems and ensuring growth of the surrounding environment. Clean water supports and maintains the health, livelihoods, and ecological balance of the ecosystem as a whole. Regular assessment of water quality is essential to ensure clean and reliable water is available to everyone. This requires regular measurement of pollutants or contaminants in water that can be monitored in real-time. Hence, this research showcases a system that consists of low-cost sensors used to measure five basic parameters of water quality that are: turbidity, total dissolved solids, temperature, pH, and dissolved oxygen. The system incorporates electronics and IoT technology that are powered by a solar charged lead acid battery. The data gathered from the sensors was stored locally on a micro-SD card with live updates that could be viewed on a mobile device when in proximity to the system. Data was gathered from three different bodies of water over a span of three weeks, precisely during the seasonal transition from autumn to winter. We adopted a water sampling technique since our low-cost sensors were not designed for continuous submersion. The results show that the temperature drops gradually during this period and an inversely proportional relationship between pH and temperature could be observed. The concentration of total dissolved solids decreased during rainy periods with a variation in turbidity. The deployed system was robust and autonomous that effectively monitored the quality of water in real-time with scope of adding more sensors and employing Industry 4.0 paradigm to predict variations in water quality.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Ecossistema , Lagos , Poluentes Químicos da Água/análise
19.
J Phycol ; 60(2): 229-253, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502571

RESUMO

Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.


Assuntos
Clorófitas , Cianobactérias , Solo/química , Plantas/microbiologia , Ecossistema
20.
Huan Jing Ke Xue ; 45(3): 1254-1264, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471842

RESUMO

This study explored the carbon metabolism efficiency of a production-living-ecological space system, which is of great significance for regional factor integration and spatial optimization. In this study, the material flow analysis method was introduced to establish a framework for evaluating the carbon metabolism efficiency of the production-living-ecological space system, and the super-efficiency DEA model and Malmquist index were used to empirically analyze the spatio-temporal distribution, dynamic change, and evolution patterns of the carbon metabolism efficiency of production-living-ecological space in the Beijing-Tianjin-Hebei Region, China, from 2000 to 2020 on the basis of the urban metabolic perspective. The results showed that:① the carbon metabolism efficiency of the production-living-ecological space showed a fluctuating growth trend, indicating the significant spatial differentiation of carbon metabolism efficiency in each city. There was a low overall carbon metabolism efficiency level, with a distribution pattern of being high in the middle and low in the north and south. ② The Malmquist index showed that the Total Factor Productivity (TFP) of carbon metabolism efficiency was greater than 1, and both the Technical Change (TC) and Pure Efficiency Change (PEC) were less than 1, in which the TFP showed an increasing trend, whereas there was no significant contribution of technological progress or pure technical efficiency to carbon metabolism efficiency. The total factor productivity of more than 50% of the cities showed an improving trend, only 38.46% of which made technological progress in improving carbon metabolism efficiency, and more than half of the urban pure technical efficiency showed a decreasing trend, in which the technical efficiency change and scale efficiency change were greater than 1 in most cities. ③ There were different types of carbon efficiency characteristics in each city, and according to the movement rules of the corresponding points in the quartile map, the evolution patterns of tourism industry efficiency were classified into stable, reciprocating, progressive, and abrupt. Therefore, local governments should adopt differentiated strategies to reasonably allocate spatial resources of production-living-ecological space and improve the technical level and scale efficiency, so as to improve the efficiency of urban carbon metabolism.


Assuntos
Carbono , Ecossistema , Pequim , Carbono/análise , China , Cidades , Eficiência , Desenvolvimento Econômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA